
CMake Tutorial

● 1 – Introduction to CMake
● 2 – Using CMake for the ILC Software
● 3 – ILCInstall with CMake

Jan Engels

DESY
20th September 2007



Jan Engels - Introduction to CMake 2

What is CMake

● CMake:
– Generates native build environments

● UNIX/Linux -> Makefiles
● Windows -> VS Projects/Workspaces
● Apple -> Xcode

– Open-Source :)
– Cross-Platform



Jan Engels - Introduction to CMake 3

CMake Features

● CMake has a lot of nice features:

– Manage complex, large build environments (KDE4)

– Very Flexible & Extensible
● Support for Macros
● Modules for finding/configuring software (bunch of modules already available)
● Extend CMake for new platforms and languages
● Create custom targets/commands
● Run external programs

– Very simple, intuitive syntax

– Support for regular expressions (*nix style)

– Support for “In-Source” and “Out-of-Source” builds

– Cross Compiling

– Integrated Testing & Packaging (Ctest, CPack)



Jan Engels - Introduction to CMake 4

Build-System Generator

CMake Native Build System

Native Build ToolsExecutables / Libraries

CMakeLists.txt



Jan Engels - Introduction to CMake 5

CMake Basic Concepts

● CmakeLists.txt
– Input text files that contain the project parameters and 

describe the flow control of the build process in simple 
CMake language.

● CMake Modules
– Special cmake file written for the purpose of finding a 

certain piece of software and to set it's libraries, include 
files and definitions into appropriate variables so that 
they can be used in the build process of another 
project. (e.g. FindJava.cmake, FindZLIB.cmake, 
FindQt4.cmake)



Jan Engels - Introduction to CMake 6

CMake Basic Concepts

● The Source Tree contains:

– CMake input files (CmakeLists.txt)

– Program source files (hello.cc)

– Program header files (hello.h)

● The Binary Tree contains:

– Native build system files (Makefiles)

– Output from build process:

● Libraries
● Executables
● Any other build generated file

● Source and Binary trees may be:

– In the same directory (in-source build)

– In different directories (out-of-source build)



Jan Engels - Introduction to CMake 7

CMake Basic Concepts

● CMAKE_MODULE_PATH

– Path to where the CMake modules are located

● CMAKE_INSTALL_PREFIX

– Where to put files when calling 'make install'

● CMAKE_BUILD_TYPE

– Type of build (Debug, Release, ...)

● BUILD_SHARED_LIBS

– Switch between shared and static libraries

● Variables can be changed directly in the build files (CmakeLists.txt) or through 
the command line by prefixing a variable's name with '-D':

– cmake -DBUILD_SHARED_LIBS=OFF

● GUI also available: ccmake



Jan Engels - Introduction to CMake 8

CMake Cache

● Created in the build tree (CMakeCache.txt)

● Contains Entries VAR:TYPE=VALUE

● Populated/Updated during configuration phase

● Speeds up build process

● Can be initialized with cmake -C <file>

● GUI can be used to change values

● There should be no need to edit it manually!!



Jan Engels - Introduction to CMake 9

Source Tree Structure

Dir1/CMakeLists.txt
SUBDIRS(Dir3 Dir4)

Dir2/CMakeLists.txt

Project's Top-Level
CmakeLists.txt

SUBDIRS(Dir1 Dir2)

Dir3/CMakeLists.txt

Dir4/CMakeLists.txt

● Subdirectories added with SUBDIRS/ADD_SUBDIRECTORY

● Child inherits from parent (feature that is lacking in traditional Makefiles)

● Order of processing: Dir1;Dir3;Dir4;Dir2 (When CMake finds a SUBDIR command it 
stops processing the current file immediately and goes down the tree branch)



Jan Engels - Introduction to CMake 10

Using CMake

● Create a build directory (“out-of-source-build” concept)

– mkdir build ; cd build
● Configure the package for your system:

– cmake [options] <source_tree>
● Build the package:

– make
● Install it:

– make install
● The last 2 steps can be merged into one (just “make install”)

Similar to Auto Tools



Jan Engels - Introduction to CMake 11

Hello World for CMake

● Top-level project directory:

– CMakeLists.txt

– Sub-directory Hello:

● CMakeLists.txt
● hello.h
● hello.cc

– Sub-directory Test:

● CMakeLists.txt
● test.cc

/*hello.h*/
#ifndef _hello_h
#define _hello_h

class Hello {
public:
  void Print();
};

#endif

/*hello.cc*/
#include "hello.h"
#include <iostream>
using namespace std;

void Hello::Print() {
  cout<<"Hello, World!”<<endl;
}

/*test.cc*/
#include <iostream>
#include "hello.h"

int main() {
  Hello().Print();
  return 0;
}

Library Hello

Test Binary



Jan Engels - Introduction to CMake 12

Hello World for CMake

# CmakeLists.txt in Hello dir

# Adds a library called Hello (libHello.a under Linux) from the source file hello.cc
ADD_LIBRARY( Hello hello )

# CmakeLists.txt in Test dir

# Make sure the compiler can find include files from our Hello library.
INCLUDE_DIRECTORIES(${HELLO_SOURCE_DIR}/Hello)

# Add binary called "helloWorld" that is built from the source file "test.cc". 
# The extension is automatically found.
ADD_EXECUTABLE(helloWorld test)

# Link the executable to the Hello library.
TARGET_LINK_LIBRARIES(helloWorld Hello)

# Top-Level CmakeLists.txt

PROJECT( HELLO )

ADD_SUBDIRECTORY( Hello )
ADD_SUBDIRECTORY( Test )



Jan Engels - Introduction to CMake 13

CmakeLists.txt Files

● Very simple syntax:

– # This is a comment

– Commands syntax: COMMAND( arg1 arg2 ... )

– Lists A;B;C # semi-colon separated values

– Variables ${VAR}

– Conditional constructs
● IF() ... ELSE()/ELSEIF() ... ENDIF()

– Very useful: IF( APPLE ); IF( UNIX ); IF( WIN32 )
● WHILE() ... ENDWHILE()
● FOREACH() ... ENDFOREACH()

– Regular expressions (check CMake FAQ for details...)



Jan Engels - Introduction to CMake 14

CmakeLists.txt Files

● INCLUDE_DIRECTORIES( “dir1” “dir2” ... )

● AUX_SOURCE_DIRECTORY( “source” )

● ADD_EXECUTABLE

● ADD_LIBRARY

● ADD_CUSTOM_TARGET

● ADD_DEPENDENCIES( target1 t2 t3 ) target1 depends on t2 and t3

● ADD_DEFINITIONS( “-Wall -ansi -pedantic”)

● TARGET_LINK_LIBRARIES( target-name lib1 lib2 ...) Individual settings for each target

● LINK_LIBRARIES( lib1 lib2 ...) All targets link with the same set of libs

● SET_TARGET_PROPERTIES( ... ) lots of properties... OUTPUT_NAME, VERSION, ....

● MESSAGE( STATUS|FATAL_ERROR “message” )

● INSTALL( FILES “f1” “f2” “f3” DESTINATION . )

– DESTINATION relative to ${CMAKE_INSTALL_PREFIX}

Check www.cmake.org -> Documentation

http://www.cmake.org/


Jan Engels - Introduction to CMake 15

CmakeLists.txt Files

● SET( VAR value [CACHE TYPE DOCSTRING [FORCE]])

● LIST( APPEND|INSERT|LENGTH|GET|REMOVE_ITEM|REMOVE_AT|SORT ...)

● STRING( TOUPPER|TOLOWER|LENGTH|SUBSTRING|REPLACE|REGEX ...)

● SEPARATE_ARGUMENTS( VAR ) convert space separated string to list

● FILE( WRITE|READ|APPEND|GLOB|GLOB_RECURSE|REMOVE|MAKE_DIRECTORY ...)

● FIND_FILE

● FIND_LIBRARY

● FIND_PROGRAM

● FIND_PACKAGE

● EXEC_PROGRAM( bin [work_dir] ARGS <..> [OUTPUT_VARIABLE var] [RETURN_VALUE var] )

● OPTION( OPTION_VAR “description string” [initial value] )

Check www.cmake.org -> Documentation

http://www.cmake.org/


Jan Engels - Introduction to CMake 16

CMake Tutorial

● 2 – Using CMake for the ILC Software



Jan Engels - Introduction to CMake 17

CMake for the ILC Software

● IMPORTANT:
– CMake files for the ILC Software were designed, written and tested exclusively for out-of-

source builds, therefore we strongly disencourage in-source builds!!

– A package should be installed first (with 'make install') before it can be used by other 
packages, thus we also strongly disencourage trying to pass the binary-tree from one 
package as the “installation directory” to other packages.

● Packages with CMake (build) support:

– Marlin, MarlinUtil, MarlinReco, CEDViewer, CED, LCIO, GEAR, LCCD, 
RAIDA, PandoraPFA, LCFIVertex, SiliconDigi, Eutelescope

● CMake modules written for external packages:

– CLHEP, CERNLIB, CondDBMySQL, GSL, ROOT, JAVA, AIDAJNI



Jan Engels - Introduction to CMake 18

Special variables

● BUILD_WITH=”CLHEP GSL”
– Tell package to use the libraries, include files and 

definitions from these packages
● <PKG>_HOME

– Variable for defining the home path from a pkg
● Standard CMake Find modules differ slightly from ILC 
Find modules

– ILC Find modules require PKG_HOME variable set
● Enforce version consistency (get rid of setting global 

environment variables for defining local dependencies)
– Could instead be called Config<PKG>.cmake



Jan Engels - Introduction to CMake 19

Macros

● MacroLoadPackage.cmake
– To be able to use a package by using a 

“Find<PKG>.cmake” module or by using a 
“<PKG>Config.cmake” file

– Assumes the PKG_HOME variable is properly set
● MacroCheckDeps.cmake

– Uses MacroLoadPackage.cmake to check 
dependencies



Jan Engels - Introduction to CMake 20

Find<PKG>.cmake Modules

● Do the same as <PKG>Config.cmake generated 
by the cmake build

● Returns variables for using the package
– <PKG>_INCLUDE_DIRS
– <PKG>_LIBRARIES
– <PKG>_DEFINITIONS

● Using the MacroLoadPackage this is automatically 
done for you



Jan Engels - Introduction to CMake 21

BuildSetup.cmake

● Script for pre-caching variables/options

– SET( VAR “value” CACHE TYPE “description” FORCE )
● Easy way to change build parameters without having to pass 

the every time on the cmd line

● Use simple steps to build a package:

– mkdir build ; cd build

– cmake -C ../BuildSetup.cmake ..

– make install
● Still possible to override options on the cmd line



Jan Engels - Introduction to CMake 22

BuildSetup.cmake

● Can use more than one -C option:

– cmake -C ../BuildSetup.cmake -C ~/ILCSoft.cmake

– Next file overwrites values from previous file

– Useful for overwriting paths defined in a 'more global' file
● CMake just ignores redundant variables from global file
● ILCInstall generates a global file called ILCSoft.cmake

● Check /afs/desy.de/group/it/ilcsoft/v01-01/ILCSoft.cmake as 
an example



Jan Engels - Introduction to CMake 23

Adapting your processor to CMake

● Copy from $Marlin/examples/mymarlin

– CmakeLists.txt
● change the project name and add missing dependencies 

(default are Marlin;LCIO) 

– mymarlinConfig.cmake.in
● rename to <MyProcessor>Config.cmake

– BuildSetup.cmake
● change this according to your system setup 

– cmake_uninstall.cmake.in
● Script for generating a 'make uninstall' target

– No changes needed!



Jan Engels - Introduction to CMake 24

CmakeLists.txt template

# cmake file for building Marlin example Package

# CMake compatibility issues: don't modify this, please!
CMAKE_MINIMUM_REQUIRED( VERSION 2.4.6 )
MARK_AS_ADVANCED(CMAKE_BACKWARDS_COMPATIBILITY)
# allow more human readable "if then else" constructs
SET( CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS TRUE )

# User section
PROJECT( mymarlin )

# project version
SET( ${PROJECT_NAME}_MAJOR_VERSION 0 )
SET( ${PROJECT_NAME}_MINOR_VERSION 1 )
SET( ${PROJECT_NAME}_PATCH_LEVEL 0 )

# project options
OPTION( BUILD_SHARED_LIBS "Set to OFF to build static libraries" ON )
OPTION( INSTALL_DOC "Set to OFF to skip build/install Documentation" ON )
# project dependencies e.g. SET( ${PROJECT_NAME}_DEPENDS "Marlin MarlinUtil LCIO GEAR CLHEP GSL" )
SET( ${PROJECT_NAME}_DEPENDS "Marlin LCIO" )
# set default cmake build type to RelWithDebInfo (None Debug Release RelWithDebInfo MinSizeRel)
IF( NOT CMAKE_BUILD_TYPE )
    SET( CMAKE_BUILD_TYPE "RelWithDebInfo" )
ENDIF()
# set default install prefix to project root directory
IF( CMAKE_INSTALL_PREFIX STREQUAL "/usr/local" )
    SET( CMAKE_INSTALL_PREFIX "${PROJECT_SOURCE_DIR}" )
ENDIF()

You can add here your own options,
but don't forget at the end of the file to

display them with a MESSAGE( STATUS)
and to also write them properly to cache!



Jan Engels - Introduction to CMake 25

CmakeLists.txt template
#include directories
INCLUDE_DIRECTORIES( "${PROJECT_SOURCE_DIR}/include" )
# install include files
INSTALL( DIRECTORY "${PROJECT_SOURCE_DIR}/include"
        DESTINATION . PATTERN "*~" EXCLUDE PATTERN "*CVS*" EXCLUDE )

# require proper c++
ADD_DEFINITIONS( "-Wall -ansi -pedantic" )
# add debug definitions
#IF( CMAKE_BUILD_TYPE STREQUAL "Debug" OR
#    CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo" )
#    ADD_DEFINITIONS( "-DDEBUG" )
#ENDIF()

# get list of all source files
AUX_SOURCE_DIRECTORY( src library_sources )

( .... )

# DEPENDENCIES: this code has to be placed before adding any library or
# executable so that these are linked properly against the dependencies
IF( DEFINED ${PROJECT_NAME}_DEPENDS OR DEFINED BUILD_WITH OR DEFINED LINK_WITH )
    # load macro
    IF( NOT EXISTS "${CMAKE_MODULE_PATH}/MacroCheckDeps.cmake" )
        MESSAGE( FATAL_ERROR
            "\nSorry, could not find MacroCheckDeps.cmake...\n"
            "Please set CMAKE_MODULE_PATH correctly with: "
            "cmake -DCMAKE_MODULE_PATH=<path_to_cmake_modules>" )
    ENDIF()
    INCLUDE( "${CMAKE_MODULE_PATH}/MacroCheckDeps.cmake" )
    CHECK_DEPS()
ENDIF()

Add your Debug definitions here!

Dependencies are
checked here!

If you have more sources you
should add them here (see for ex.

LCFIVertex CMakeLists.txt)

Include directories here



Jan Engels - Introduction to CMake 26

CmakeLists.txt template
# LIBRARY
ADD_LIBRARY( lib_${PROJECT_NAME} ${library_sources} )
# create symbolic lib target for calling target lib_XXX
ADD_CUSTOM_TARGET( lib DEPENDS lib_${PROJECT_NAME} )
# change lib_target properties
SET_TARGET_PROPERTIES( lib_${PROJECT_NAME} PROPERTIES
    # create *nix style library versions + symbolic links
    VERSION ${${PROJECT_NAME}_VERSION}
    SOVERSION ${${PROJECT_NAME}_SOVERSION}
    # allow creating static and shared libs without conflicts
    CLEAN_DIRECT_OUTPUT 1
    # avoid conflicts between library and binary target names
    OUTPUT_NAME ${PROJECT_NAME} )

# install library
INSTALL( TARGETS lib_${PROJECT_NAME} DESTINATION lib PERMISSIONS
        OWNER_READ OWNER_WRITE OWNER_EXECUTE
        GROUP_READ GROUP_EXECUTE
        WORLD_READ WORLD_EXECUTE )

# create uninstall configuration file
CONFIGURE_FILE( "${PROJECT_SOURCE_DIR}/cmake_uninstall.cmake.in"
                "${PROJECT_BINARY_DIR}/cmake_uninstall.cmake"
                IMMEDIATE @ONLY )
# create uninstall target
ADD_CUSTOM_TARGET( uninstall
  "${CMAKE_COMMAND}" -P "${PROJECT_BINARY_DIR}/cmake_uninstall.cmake" )
# create configuration file from .in file
CONFIGURE_FILE( "${PROJECT_SOURCE_DIR}/${PROJECT_NAME}Config.cmake.in"
                "${PROJECT_BINARY_DIR}/${PROJECT_NAME}Config.cmake" @ONLY )
# install configuration file
INSTALL( FILES "${PROJECT_BINARY_DIR}/${PROJECT_NAME}Config.cmake" DESTINATION . )

Library



Jan Engels - Introduction to CMake 27

CmakeLists.txt template
# display status message for important variables
MESSAGE( STATUS )
MESSAGE( STATUS "-------------------------------------------------------------------------------" )
MESSAGE( STATUS "BUILD_SHARED_LIBS = ${BUILD_SHARED_LIBS}" )
MESSAGE( STATUS "CMAKE_INSTALL_PREFIX = ${CMAKE_INSTALL_PREFIX}" )
MESSAGE( STATUS "CMAKE_BUILD_TYPE = ${CMAKE_BUILD_TYPE}" )
MESSAGE( STATUS "CMAKE_MODULE_PATH = ${CMAKE_MODULE_PATH}" )
MESSAGE( STATUS "${PROJECT_NAME}_DEPENDS = \"${${PROJECT_NAME}_DEPENDS}\"" )
MESSAGE( STATUS "BUILD_WITH = \"${BUILD_WITH}\"" )
MESSAGE( STATUS "INSTALL_DOC = ${INSTALL_DOC}" )
MESSAGE( STATUS "Change a value with: cmake -D<Variable>=<Value>" )
MESSAGE( STATUS "-------------------------------------------------------------------------------" )
MESSAGE( STATUS )

# force some variables that could be defined in the command line to be written to cache
SET( BUILD_SHARED_LIBS "${BUILD_SHARED_LIBS}" CACHE BOOL
    "Set to OFF to build static libraries" FORCE )
SET( CMAKE_INSTALL_PREFIX "${CMAKE_INSTALL_PREFIX}" CACHE PATH
    "Where to install ${PROJECT_NAME}" FORCE )
SET( CMAKE_BUILD_TYPE "${CMAKE_BUILD_TYPE}" CACHE STRING
    "Choose the type of build, options are: None Debug Release RelWithDebInfo MinSizeRel." FORCE )
SET( CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" CACHE PATH
    "Path to custom CMake Modules" FORCE )
SET( INSTALL_DOC "${INSTALL_DOC}" CACHE BOOL
    "Set to OFF to skip build/install Documentation" FORCE )

# export build settings
INCLUDE( CMakeExportBuildSettings )
CMAKE_EXPORT_BUILD_SETTINGS( "${PROJECT_NAME}BuildSettings.cmake" )
# export library dependencies (keep this as the last line in the file)
EXPORT_LIBRARY_DEPENDENCIES( "${PROJECT_NAME}LibDeps.cmake" )

And here you should also add
your own project options to be

properly written to cache!

Here you can display your
own project options



Jan Engels - Introduction to CMake 28

Loading Processors in Marlin

● MARLIN_DLL environment variable
– $ export MARLIN_DLL=”/path1/lib1.so:/path2/lib2.so:$MARLIN_DLL”

– $ ./Marlin steer.xml

– Using ILCInstall this information is already added to the generated file 
build_env.sh for the processors found in the config file

● Linking Marlin with other shared libraries
– Add to your Marlin BuildSetup.cmake

● SET( LINK_WITH "MarlinReco CEDViewer” CACHE STRING “Link Marlin with 
these optional packages" FORCE )

– Or pass it on the command line:

● $ cmake -C ../BuildSetup.cmake

– -DLINK_WITH="mymarlin PandoraPFA"
– -Dmymarlin_HOME="path_to_mymarlin
– -DPandoraPFA_HOME="path_to_pandora" ..



Jan Engels - Introduction to CMake 29

Loading Processors in Marlin

● Linking static libraries (Only works under linux!)
– -DLINK_STATIC_WHOLE_LIBS="path_to_library/libMyprocessor.a"

– Library gets fully included into the Marlin binary

– For more than one library:

● -DLINK_STATIC_WHOLE_LIBS="/path1/lib1.a;/path2/lib2.a"



Jan Engels - Introduction to CMake 30

CMake Tutorial

● 3 – ILCInstall with cmake



Jan Engels - Introduction to CMake 31

ILCInstall
ilcsoft = ILCSoft("/data/ilcsoft")
ilcsoft.useCMake = True

# python variable for referring the ILC Home directory
ilcPath = "/afs/desy.de/group/it/ilcsoft/"

# install RAIDA v01-03
ilcsoft.install( RAIDA( "v01-03" ))
# example for setting cmake variables (“ON”/”OFF” is equivalent to 1/0)
ilcsoft.module( “RAIDA” ).envcmake[“BUILD_RAIDA_EXAMPLE”] = “ON”
ilcsoft.module( “RAIDA” ).envcmake[“RAIDA_DEBUG_VERBOSE_FACTORY”] = 1

# use ROOT at: /afs/desy.de/group/it/ilcsoft/root/5.08.00
ilcsoft.link( ROOT( ilcPath + "root/5.08.00" ))
# use CMakeModules at: /afs/desy.de/group/it/ilcsoft/CMakeModules/v01-00
ilcsoft.use( CMakeModules( ilcPath + "CMakeModules/v01-00" ))
# use CMake at: /afs/desy.de/group/it/ilcsoft/CMake/2.4.6
ilcsoft.use( CMake( ilcPath + "CMake/2.4.6" ))
# End of configuration file

CMake variables to be
passed on the cmd line
when building RAIDA



Jan Engels - Introduction to CMake 32

ILCInstall

● After creating the file call:
– ilcsoft-install RAIDA.cfg (display summary)
– ilcsoft-install RAIDA.cfg -i (install RAIDA)

● ILCSoft.cmake is generated by installation script
– Placed in the root directory of installation
– Contains paths for all packages defined in cfg file

● Only the ones that are supported by the cmake modules!



Jan Engels - Introduction to CMake 33

ILCInstall (Dev)

● Under the directory “releases” you find the AFS 
reference-installation configuration files
– Copy one of them:

● Only install packages you want to work on
– ilcsoft.module("RAIDA").download.type="ccvssh"
– ilcsoft.module("RAIDA").download.username="engels"

● Change the package dependencies install -> link
– ilcsoft.link( ROOT( "/data/myILCSoftware/root/5.08.00" ))

● Set needed options
– ilcsoft.module(“RAIDA”).envcmake[“BUILD_RAIDA_EXAMPLE”] = 1
– ilcsoft.module(“RAIDA”).envcmake[“RAIDA_DEBUG_VERBOSE_FAC

TORY”] = 1



Jan Engels - Introduction to CMake 34

References

● http://ilcsoft.desy.de -> General Documentation -> “How to use the CMake 
building tool for the ILC Software”

● http://www.cmake.org

– Documentation

– FAQ

● Mastering CMake

– Ken Martin, Bill Hoffman

– Published by Kitware, Inc.

– ISBN: 1-930934-16-5

● This talk: http://ilcsoft.desy.de -> General Documentation

Thank you!

http://ilcsoft.desy.de/
http://www.cmake.org/
http://ilcsoft.desy.de/

