Modular Software
Development
for MarlinReco et al.

Frank Gaede
ILCSoft Meeting
DESY, May 03, 2006

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Outline

Coding conventions
Style guidelines

STL classes
container and algorithms

Software philosophy
the LCIO-Marlin Paradigm

Modular programming
example NN-Clustering

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Style guidelines - Introduction

coding style guidelines are recommendations with the
aim to:
enhance the readability of code developed for one project or
within one group

thus increase understanding of code written by one self and
others

and improve maintainability and quality of code
feel free to violate any rule of the guidelines

In order to enhance readability
If you have strong personal objections against a specific rule
if you think you can convince QA of your team

coding style guidelines are there to help you and
not to serve as reasons for religious wars !

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

variable names start with lower case

variable names are mixed case starting with lower
case but every following word with upper case
SavingsAccount someAccount ;
const ColMap™* collectionMap ;
the larger the scope the longer (explicit) the variable
name:

static SimpleCluster” largestEnergyClusterinEvent ;
int NClu = col->getNumberOfElements() ; // local helper variable
loop variables typically are: 1,},k,I,m,n:

for(int i=0; i< nClu ; i++){ ... }

type names start with upper case

type names are mixed case starting every word and
the type name itself with upper case:

class SavingsAccount ;

typedef std::map< std::string, Icio::LCCollection> ColMap ;
struct SimpleCluster ;

class TrackClusterLink ;

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

methods/functions start with lower case

method/function names are verbs with mixed case
starting with lower case but every following word
with upper case

float SavingsAccount::getBalance() ;
SimCalorimeterHit::addMCParticleContribution(...) ;

typically simple attributes are accessible via a
get/set pair of methods:

float getEnergy() / void setEnergy(float energy)
boolean attributes start with 'is' or 'has’:
isBackScatter() , hasEndPoint(), isFinalState() ,...

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

constants are all upper case

constants are all upper case — optionally using ' 'to
separate words:

M_PIl, LCIO::SIMTRACKERHIT , LCIO::\WRITE_NEW

prefer real constants (static class members defined in
declaration) to #defines

-> public class member variables should always be
constant and all upper case

member variables start with '

all member variables (protected and private) are
prefixed with ' " in order to clearly distinct those in
code from local variables

class MCParticle{

/...

protected:
double _energy ;
double _momentum([3] ;
double mass ;

¥

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

make casts explicit

C-style casts are discouraged and only allowed for
basic types — use dynamic_cast, static_cast and
reinterpret_cast instead:

float pi = (float) M_PI; // OK

SimCalorimeterHit* hit =
(SimCalorimeterHit*) col->getElementAt(i) ; // NO !
dynamic_cast<SimCalorimeterHit*>(col ...) ; // YES !

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

use reasonable iIndentation

use indentation of 2,3 or 4 characters to emphasize
the logical layout, (e.g. use emacs c++-mode)
while(lisOver){
iIsOver = keepDoingSomething() ;
}

if(conditionA){
doSomething() ;
} else {
if(conditionB){
doNothing() ;
}
}

10

don't squeeze the code

use empty lines and whitespace to enhance the
readability of the code

for(int i=0;i<nClu;i++){ // somewhat squeezed
doThelLoopThing() ;

}

for(inti=0;i<nClu; i++) { /] better :-)

doThelLoopThing() ;
}

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

11

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

document the code

code should be documented using javadoc/doxygen
documentation style:

/** A class that does the following for some good reason.
* Describe the main purpose and use cases here.

*

* @author F.Gaede, DESY
* @version $id: $
*/
class SomeNewClass { ...
j
document at least: classes and public member functions

use standard C++ comments for comments for developers
In code

// here we need to transform into the CMS
vCMS = vLab.boost(cmsVector) ;

12

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

stick to the standard

use only ANSI C++ and STL

for compiling use. e.qg.

g++ -c -Wall -ansi -pedantic

modify code until NO warnings persists

13

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

actively use CVS

use CVS to manage changes to the source code

frequently check in changes — documented and
tagged (daily !)

only check in code that compiles

If you need to make larger changes create a branch
and develop in this branch until you are ready to merge
the new development into the main

check in only in your package subdirectory
communicate with your colleagues in case of doubt
what's not in CVS hasn't been done, yet !

14

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

some general remarks

keep it simple:

good programs can be read and understood by any of your colleagues (and
yourself after 6 month)

complicated code is more error prone and harder to debug
don't spend to much thought on optimizing the code for CPU
performance:

the optimizer is usually better than you think
most code is executed only a small number of times/run anyway
optimize only critical (nested) loops after they have been identified

test, test and test your code:

provide some simple (documented) example/test programs for your code
read other code that exists within the group to get some ideas
on how things can be done
prefer STL algorithms over self written code

keep it simple !

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Standard Template Library

C++ comes with a very powerful set of templates
that make your life easier: the STL

at the heart of STL are two types of
classes/functions:

containers (and iterators)

algorithms

STL has been developed by the real experts
it is highly optimized

thoroughly tested

standardized

makes your code more readable and efficient

16

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

STL containers

vector
one dimensional array
list
doubly linked list
deque
doubly ended queue
set, queue, stack,...
map
associative array (set of key value pairs)
pair

17

STL algorithms

typically work with all STL containers through the
use of iterators, e.g.

std::transform(cl.begin(), cl.end(), std::back_inserter
(*lcioClusters) , converter) ;

Copy
sort

find
transform

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

18

LCIO -Marlin SW paradigm

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

keep data structures and

algorithms separated !

LCIO defines the data model that is used in ILC
computing

Marlin provides the modular framework for
algorithms that operate on the data

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Marlin/LCIO

+ modular C++ application

framework for the analysis and Wﬂaj
MyInput0.sicio

. 4
reconstruction of LCIO data /x Digitization
. \ J
> uses LCIO as transient data model | LCEven — _ o
1> Tracking
+ software modules called = N)
collecti —) N
Processors » Clustering
J
- Plug&Play of processors —readand ©
coIIections\ ooc
* PRlow
ow
SimCalorimeterHit RﬂWCﬂil;imeter '_ [MyInPUtSICIO] . </
/ T \ _ E)utputProcessor
{CalorimeterHit [J
MCParticle |~ CRelation =
SimTrackerHit .. : : _

Monte Carlo

marlin::main
N

20

Module (wikipedia.orQ)

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

In computer science, a module is a software entity
that groups a set of (typically cohesive)
subprograms and data structures. Modules are units
that can be compiled separately, which makes them
reusable and allows multiple programmers to
work on different modules simultaneously.
Modules also promote modularity and encapsulation
(i.e. iInformation hiding), both of which can make
complex programs easier to understand.

Modules provide a separation between interface

and impleme_ntation. LCIO data model
Algorithms (+extensions?)

Marlin processors
MarlinReco package 21

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

modular PFA development

proposal to develop PFA in a modular way:

write your algorithm in terms of abstract classes and
function

use STL containers and algorithms

use a well defined interface for input and output —
preferably LCIO collections of LCIO objects

provide one or several Marlin processors that allow to

run your algorithm in a Marlin program

produces check plots (AIDA histograms)

uses only trivial code (no algorithmic part)

serves as example for others on how to use your code

22

example NNClustering

the next slides show an example of a generic
module (package) that does NN type clustering

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

23

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

generic hit

template <class U»
class GenericCluster ;

Sk Generalized hits points back to cluster, templated with original hit class.
e

template <class T»

class GenericHit @ public std::pair< T, GenericCluster<Tys »i

typedet T value_type ;
public:

GenericHit (T hit, int indexd = 0) @ IndexO(index0) |
tirst = hit ;
secand = 0 ;

i

GenericHit (T hit , GenericCluster<T:s cl , int index0 = 0) @ Index0(index()
tiret = hit
second = cl ;

}

A4 Index that can be used to code nearest neighbour bins, e.g. 1n z-coordinate
10 speed up the clustering process.

#/

int Indexo ;H

I

]

24

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

generic cluster

JwGeneralized cluster - holds list of GenericHits, templated with original hit class.

*/

Template <class T »
class GenericCluster @ public std::list< GenericHit<Ty % > §

1 1 O
public :

GenericCluster(GenericHit<Ty* hit) §

!

addHit(hit] ;

vold addHit(GenericHit<T»# hit) |

E

hit-»second = this ;
push_hacki hit) ;

vold mergeClusters(GenericCluster<Tesx cl) ¢

;
-

fori{ typename GenericCluster<Ty::iterator it = cl-sbegin() ; it I=

(kit)-rsecond = this
;
mergel %cl) ;

.
1

cl-rend() ; it++)

25

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

generic NN clustering

template <class In, class Out, class Pred >
vold cluster(In first, In last, Out result, Preds pred) §

typedef typename In::value_type GenericHitPir ;
typedef typename Pred::hit_tupe HitType ;

typedef std::vector< GenericCluster<HitType >%x > ClusterList ;

ClusterList tmp ;
tmp.reservel 256 0 ;

whilef{ first != last) {
for(In other = first+1 ; other != last ; other ++) {
if(pred->mergeHits((xfirst) , (sother))) §
if{ (#first)-»second == 0 && (xother)-second == 0)} { // no cluster exists
GenericCluster<HitTupe »=# cl = new GenericCluster<HitType > (xfirst))
cl-raddHit{ (xother) j ;
tmp.push_backi{ cl) ;

i
elze if((xfirst)i-rsecond '= 0 &% (sxother)-rsecond '= 0) §{ // two clusters

{#f irst)-»second->mergeClusters((xother)-»second) ;
P else § 4/ one cluster exists

ifi (*first)-»second '= 0) §
{#f irst)-»second->addHit((xother)) ;
i else |
{#o0ther)->second->addHit{ (*xfirst) 3 ;
;
;

i/ dout
i
++first ;
i
SSoremove empty clusters

1

26

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

NN distance functor class

J#or Simple predicate class for nearest neighbour clustering. Requires
PosTypex HitClass::2etPositioni(), e.g for CalorimeterHits use: <br:
NNDistance<CalorimeterHit,float> dist{ myDistCut) ;

"o

template <class HitClass, tupename PosType »

class NMDistanced

public:

ok Regulired typedet for cluster algorithm

#

typedef HitClass hit_type ;

S#k C'tor takes merge distance =/

MMDistance(float dCut) : _dCutSquared(dCutsdCut) £3

S Merge condition: true if distance 1is less than dCut given in the C'tor.=ss
inline bool mergeHits({ GenericHit<HitClass>»#x hQ, GenericHit<HitClass>#x hl)§

ifi std::abs(ho-»>Index0 - hi->Index0 3 > 1 1 return false

ho->f irst-»getPosition() ;
hi-:first->getPosition() ;

const PosType:®x poso
const PosType:x posl

return
i pos0[o] - posi1[o]l 3 % (posolo]l - posi[ol) +
i pos0[1] - posi[1]) # (poso[l] - posi[1]) +
i pos0[2] - posi[2]) = © posof[2] - posif[Z])
< _dCutSquared ;
i

protected:
MMDistance() ;

float _dCutSguared ;

L

27

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

NNClusterProcessor

vwoid MMClusterProcessor: :processEvent(LCEvent = ewt) i

B

clock_t start

clock () 3

LCCollectionYecs lcioClusters = new LCCollectionvec! LCIO::CLUSTER 3

GenericHitvec<CalorimeterHit> b ;

GenericClustervec<CalarimeterHits> cl ;

EnergyCut<CalorimeterHit> eCut{ _eCut } ;

ZIndex<CalorimeterHit, 100> zIndex{ -4300. , 4300, 1 ;

MHDistance< CalorimeterHit, floats> dist{ _distCut)

LCIOCluster<CalorimeterHit> converter ;

A4 create a vector of generic hits from the collection applying an energy cut

for({ StringWec::iterator it = _colMames.begin() ; it !'= _colNames.endi) ; it++ 3§
LCCollection® col = ewt->getCollectiont =*«it I ;
addToGenericHitvec!(h , col , eCut 1 ;

addToGenericHitVYec{ h , col , eCut , zInde= J ;

i

A4 cluster the hits with a nearest neighbour conditftion
cluster(h.begini) , h.end() , std::back_inserter({ cl 1) , &dist J ;

S create lcio::Clusters from the clustered GenericHits
std: :transform{ cl.begin(), cl.end{), std::back_inserter{ xlcioClusters) , converter } ;

evt->addCollection(lcioClusters , _outputColMame J 3
_NEYt ++ 3
clock_t end = clock () s

std::cout <<

L]

L]

clustering time: << doublel end - start) / double(CLOCKS_PER_SEC) << std::endl

1

28

Frank Gaede, ILCSoft meeting, DESY, May 3, 2006

Summary

coding guidelines are there to help you

modular programming is an essential prerequisite
for collaborative development

when programming always stay focus on your
problem at hand but keep your fellow colleagues in
the back of your head:

how can this code be made a bit more abstract so that it
can be used by the ILC community

29

