
Overlay - A Marlin Package for Event Merging

DESY Summer Student Programm 2007

Nicola Chiapolini

Supervisor: Frank Gaede

14.09.2007

Abstract

The task of this work was, to implement a mechanism for overlaying several events of
International Linear Collider (ILC) collision data. The resulting Overlay Processor has been
developed in the Marlin/LCIO software framework used by the European ILC community In
addition a simple analysis program was developed. Although it did not reach a state where
the Overlay Processor could be tested several problems with the existing analysis applications
were found. Finnally as a by product of the development a tool to display the content of data
�les in a tree like pattern was implemented.

Contents

1 Motivation 2

2 Requirements 2

3 Implementation 2

3.1 Overlay Processor . 2

3.2 Merger Class . 3

4 Test Analysis 4

5 LCIO Shell 5

5.1 Redirection . 6

A Methods of the Merger Class 7

A.1 Core Method . 7

A.2 Methods used by Overlay . 7

A.3 Additional Wrapper Methods . 8

1

1 Motivation

The next big project in High Energy Physics is the planned International Linear Collider (ILC)
that will collide electrons and positrons at a 500 GeV centre of mass energies. The European
ILC community uses the Marlin C++ application framework for its analysis and reconstruction
studies. Marlin is based on the LCIO persistency framework and data model.

Neither Marlin nor LCIO o�ered a native way to overlay events from di�erent data sources, an
ability frequently requested by the users as background and physics events are generated separately
and need to be combined in order to study the e�ects of various backgrounds to physics events.

The Overlay Processor addresses this need and o�ers a simple way to merge collections based on
di�erent parameters.

2 Requirements

To address the needs of the ILC community, the solution had to be implemented as a processor
for the Marlin framework. In contrast to other processors, the merge mechanism needs to alter
existing data and therefor requires a forth, additional access mode to LCIO's three major ones
(writing, reading and extending and read only).

As normally only simulated data will be processed, it initially su�ced to implement merging for
few collection types, namely MCParticles, SimTrackerHit and SimCalorimeterHit. Collections of
type TrackerHit and CalorimeterHit where added later too but nevertheless the implementation
needed to be easily extendable to further collection types.

In addition it must be simple to merge collections or whole events based on di�erent criteria and
it should not require much work to implement additional criteria.

3 Implementation

To full�ll all the requirements above, the implementation is divided into two parts. The Merge
Class consits of all the methods needed to merge two collections or events respectively and the
Overlay Processor is used to con�gure the merge process based on settings given in the Marlin
steering �le.

3.1 Overlay Processor

The Overlay Processor is con�gured with the Marlin steering �le. Five parameters can be set (see
Table 1). At least the InputFileNames must be set, de�ning the background events that are to be
merged with the physics events.

By default the processor merges all collections of the types MCParticles, SimTrackerHit, Sim-
CalorimeterHit, TrackerHit and CalorimeterHit with the same collection names. Optionally, the
collections that should be merged can be speci�ed with CollectionMap.

This is needed if the Monte Carlo particles of the background processes should be stored separately
from the particles of the physics processes or if the generators used di�erent naming conventions.

The three remaining parameters allow to specify the number of background events added to each
physics event. Note worthy here is the parameter runOverlay. Using this background following
an arbitrary distribution can be added to the events. To do this, the background event need to
be grouped into runs according to the distribution.

2

Table 1: The di�erent parameters for the Overlay Processor that can be speci�ed within the
Marlin steering �le

Parameter Type Function
InputFileNames StringVec The names (with absolute or relative pathes) of the

�les from which the background should be read. Mul-
tiple �les can be given by a white spaces separated
list or by setting this parameter multiple times. If
the end of the last �le is reached, before all events
have been processed, a warning will be printed and
reading restarted with the �rst �le.

CollectionMap StringVec Pairs of collection names. The input collection (given
�rst) will be merged into the output collection. If the
output collection does not exist, it will be created. It
is recommended to set this parameter once for each
collection pair. If this parameter is not set, all collec-
tions with the same name and type will be merged.

NumberOverlayEvents int Fixed number of background events that should be
added to each physics event.

expBG double If this value is set, a random number of background
will be added to each physics event. The Random
numbers will be thrown according to a Poisson dis-
tribution with this expectation value. If set, Num-
berOverlayEvents will be added to the random num-
ber.

runOverlay bool If true, NumberOverlayEvents and expBG will be
ignored. Instead one run of background events will
be added to each physics event.

3.2 Merger Class

The Merger Class provides the low-level functions to merge events and collections. The work horse
of this class is the method merge(LCCollection∗, LCCollection∗). This is the most basic merge
method and contains the actual implementation of the merge. To implement the merge for an
additional collection type a new block needs to be added to the if-then sequence in this method.
The if-sequence is used, as most of the collections can be handled by the same block and the
implementation can thus be almost completely independent of the collection type.

In addition to the basic method explained above, the Merger class contains di�erent wrapper
methods with di�erent lists of arguments. The Overly Processor calls either the merge(LCEvent∗,
LCEvent∗) or merge(LCEvent∗, LCEvent∗, map∗). The �rst method merges all the collections in
two events with matching collection name and type. While the second method merges collections
according to the map given as third parameter.

The remaining methods are provided for users who want to implement their own merging tool.
In addition these users can easily add other wrappers methods to the Merger class. The existing
methods and the algorithm of the Merger class are documented in the Appendix A.

3

4 Test Analysis

After the �rst version of the Overlay Processor was completed, a test analysis was planned up. This
analysis had to overcome di�erent obstacles. First of all the used analysis processor PandoraPFA
seemed to not work correctly as there were no charged particles reconstructed by the analysis. As
the charged particles were missing in the example analysis form the PandoraPFA package too, the
bug seems to be on the side of the analysis package.

Instead of PandoraPFA a TrackBased reconstruction algorithm was therefore used. The �rst tries
with 500 GeV centre of mass energy showed, that the tool is at the moment too slow for use at
such high energies. As a result data �les at Z-Pole energy were used instead. Analysing the reason
for the time needed to analyse the data, hints for several memory leaks were found. This problem
will need further investigation beyond the scope of this work.

At �rst, e+ − e−-pair background at 500 GeV was used. Running the analysis on the original
background �les containing 100 background events with almost 3 million particles in total , only
7 particles were reconstructed. This background seems negligible and thus could not be used to
test the Overlay Processor. Further studies with other background sources will have to be carried
out.

(a) Simulated (1.2 · 106 particles) (b) Reconstructed (7 particles)

Figure 1: Energy Spectrum of Background

The analysis of the ZPole events produced results in acceptable agreement with the expectations.
Nevertheless further studies are required to understand the results and their reasons better but
this was not possible anymore within the time frame of the summer students program.

(a) Total Energy in Events (b) Energy Spectrum of Particles

Figure 2: ZPole Analysis

4

5 LCIO Shell

While working on the Overlay Processor the content of the events and collections used for testing
needed to be displayed and analysed repeatedly. As there existed no tool to print selected data
from slcio �les, this could only be done by adjusting a small program over and over again.

This prompted for a tool to display selected content of slcio �les. This tool was then implemented
as the LCIO Shell. The user can now browse and display the content of slcio �les opened with the
shell similar to the way a directory tree works (see Figure 3).

Figure 3: A Session in the LCIO Shell

Large file: not preparing map of events in runs!

24 Runs - ?? Events

OutputBG.slcio$ cd 1/5/7

OutputBG.slcio/run1/evt5/TrueTracks$ ls

name: TrueTracks

type: Track

elements: 0

OutputBG.slcio/run_1/evt_5/TrueTracks$ cd ..

OutputBG.slcio/run_1/evt_5$ ls

[0] ClustersFromTrackBasedPFlow Cluster 0

[1] ECAL CalorimeterHit 0

[2] EMShowerCandidates Cluster 0

[3] HCAL CalorimeterHit 0

[4] MCParticle MCParticle 1

[5] RecoParticlesTrackBasedPFlow ReconstructedParticle 0

[6] RelationCaloHit LCRelation 0

[7] TrueTracks Track 0

[8] TrueTracksToMCP LCRelation 0

OutputBG.slcio/run_1/evt_5$

What started as a quick and dirty hack, had by the end of the project developed into a utility with
many functions. Figure Figure 4 shows the output of the internal help, explaining the di�erent
commands. Special abilities include the dumping of events and collections using the functions
provided by LCTOOLS, interrupting large outputs using [ctrl]+[c] and redirecting output to a �le
and subsequently opening the �le with a pager.

5

Figure 4: Internal Help of the LCIO Shell

COMMANDS:

cd | cl <number of OBJECT|..> change into OBJECT | leave object

multiple levels can be given at once

e.g.: file.slcio/run1$ cd ../3/1

ls list elements on next level | list

content of active collection

dump [-d] dump data of active level; -d triggers

detailed dump of event

print | cat [-s] <collection nr> print content of collection given;

-s triggers short print-out

open <filename> open new file

exit | quit exit program

help print this help text

pager <command> use pager <command> when paging output

REDIRECTION:

If '|' or '>' is appended to the a command, the output will be

redirected to a file and then displayed with the pager (see above).

If a string is given after the redirect token, it is used as filename

and the file is stored. (existing files will get overwritten without

prompt). If no filename is given, a temporary file will be used for

paging.

e.g.: file.slcio/run1/evt1$ dump -d > event1.txt

5.1 Redirection

The redirection of the output into a �le was a technically interesting task. C++ uses the stream-
bu�er cout for its output and a stream can be redirected using its rdbuf() method. However this
failed due to the use of printf() within the dump functions. printf() is not sent through the
streambu�er but to the system level output directly.

It was therefor necessary to redirect the output on system level. This is done by exchanging the
�le descriptor of stdout (1) by the one of the temp�le (fd_temp).

dup2(1, fd_old); // backing up old fd pointed to by stdout (1 = stdout)

dup2(fd_temp, 1); // changing the fd pointed to by stdout

After the redirected command is �nished the �le descriptor will then be changed back so that the
output is printed to the shell again.

6

A Methods of the Merger Class

A.1 Core Method

void Merger::merge (LCCollection ∗ src, LCCollection ∗ dest) [static]

merge function, takes two collections and adds the elements from src to dest. Both collections
need to have same type!
For MCPARTICLE, SIMTRACKERHIT, TRACKERHIT: All Hits from the source collection are copied
into the destination collection.
For SIMCALORIMETERHIT, CALORIMETERHIT: If the destination collection contains a hit with the
same cellID, the energy of the source hit will be added to it. Otherwiese the hit will be copied
into the destination collection. (In case of simulated data the MCParticle contributions will be
preserved.)

It is the callers responsability to make sure the mcParticles pointed to by the hits do
exist!

Parameters:

src Collection containing the entries that should be added to another collection.

src Collection to which the new entries should be added.

A.2 Methods used by Overlay

void Merger::merge (LCEvent ∗ srcEvent, LCEvent ∗ destEvent) [static]

Tries to merge collections with a name present in both events.

Parameters:

srcEvent source event.

destEvent destination event

calls merge(LCCollection∗, LCCollection∗) (p. 7) internally

void Merger::merge (LCEvent ∗ srcEvent, LCEvent ∗ destEvent, map< string, string
> ∗ mergeMap) [static]

Merges the collections of the two events according to a given map

Parameters:

srcEvent source event.

destEvent destination event

∗mergeMap Map containing the src->dest association for the collection names

Map structure: (srcColName, destColName)

If srcCol does not exist, the pair will be ignored, if destCol does not exist, a new collection
with the same type as srcCol will be created.

calls merge(LCCollection∗, LCCollection∗) (p. 7) internally

7

A.3 Additional Wrapper Methods

void Merger::mergeMC (LCEvent ∗ srcEvent, LCEvent ∗ destEvent, string
mcDestString) [static]

Tries to merge collections with a name present in both events (like merge(LCEvent∗,
LCEvent∗) (p. 7) but the MC particle collection in srcEvent is merged with the collection named
mcDestString.

Parameters:

srcEvent source event.

destEvent destination event

mcDestString name of the collection that the MCPARTICLE collection should be merged
with. If more then one collection of type MCPARTICLE exists in srcEvent the function
exits without any action.

calls mergeMC(LCEvent∗, string, LCEvent∗, string) (p. 8) internally

void Merger::mergeMC (LCEvent ∗ srcEvent, string mcSrcString, LCEvent ∗
destEvent, string mcDestString) [static]

merge function, takes two events and tries to merge collections with a name present in both events.

Parameters:

srcEvent source event.

destEvent destination event

mcSrcString The MCParticle collection in srcEvent

mcDestString The MC particle collection the source particles should be added to. If this
collection does not exist, a new collection is created.

calls merge(LCEvent∗, LCEvent∗) (p. 7) internally (after merging the MC collections and
removing mcSrcString from the srcEvent)

void Merger::merge (LCEvent ∗ srcEvent, string srcString, LCEvent ∗ destEvent,
string destString) [static]

Merges the two named collections in the given events

Parameters:

srcEvent source event.

srcString name of the source collection

destEvent destination event

destString name of the destination collection

calls merge(LCCollection∗, LCCollection∗) (p. 7) internally

8

